Nonlinear Flight Controller Synthesis of a Bat-Inspired Micro Aerial Vehicle

نویسندگان

  • Alireza Ramezani
  • Xichen Shi
  • Soon-Jo Chung
  • Seth Hutchinson
چکیده

This work examines the control of nonlinear dynamic systems to synthesize a flight controller for Bat Bot (B2). B2 is a bat-inspired Micro Aerial Vehicle (MAV) which has articulated arm wings with several actuated and passive joints. B2 is designed to mimic the flight apparatus of actual biological bats, which is distinguished from other animals such as birds because bats employ numerous joints–more than 20 joint angles per each wing–and exhibit sophisticated motion patterns. B2 has significantly fewer degrees of freedom (DoF) than biological bats and the existing movements in the mechanism of B2 are: flapping motion of the wings, folding and unfolding of the wings and dorsoventral movements of the legs. The current work contributes to recent attempts to produce autonomous flapping flight motions in a bio-inspired robot with nontrivial morphology. This work uses the Lagrange framework to develop a nonlinear dynamic model for B2, and it proposes a nonlinear controller based on the theory of singular perturbation in order to track desired attitude angles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergistic Design of a Bio-Inspired Micro Aerial Vehicle with Articulated Wings

The sophisticated and intricate connection between bat morphology and flight capabilities makes it challenging to employ conventional flying robots to replicate the aerial locomotion of these creatures. In recent work, a bat inspired soft Micro Aerial Vehicle (MAV) called Bat Bot (B2) with five Degrees of Actuation (DoA) has been constructed to mimic the flight behavior of a biological bat. Maj...

متن کامل

Biologically Inspired Micro-Flight Research

Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hu...

متن کامل

Biologically Inspired Flight Techniques for Small and Micro Unmanned Aerial Vehicles

This paper discusses energy extraction from atmospheric turbulence by smalland microuninhabited aerial vehicles. A controller which superimposes a gust-dependent control input on a state-feedback derived control input is proposed, and a genetic algorithm is used to obtain control gains as well as the optimal nominal trim state is described. Control laws are designed for both vertical sinusoidal...

متن کامل

Towards Bio-inspired Robotic Aircraft: CPG-based Control of Flapping and Gliding Flight

This paper presents experimental micro aerial vehicle (MAV) research with low-frequency flapping and articulated wing gliding. The importance of phase difference control via an abstract mathematical model of central pattern generators (CPGs) is confirmed with a robotic bat on a 3-DOF pendulum platform. An aerodynamic model for the robotic bat based on the complex wing kinematics is presented. C...

متن کامل

Insect Flight Muscles: Inspirations for Motion Control in Flapping-Wing MAVs

Micro-aerial vehicles (MAV) and their promising applications – such as undetected surveillance or exploration of environments with little space for land-based maneuvers – are a well-known topic in the field of aerial robotics. Inspired by high maneuverability and agile flight of insects, over the past two decades a significant amount of effort has been dedicated to research on flapping-wing MAV...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015